Module and Comodule Categories - a Survey

نویسنده

  • Robert Wisbauer
چکیده

The theory of modules over associative algebras and the theory of comodules for coassociative coalgebras were developed fairly independently during the last decades. In this survey we display an intimate connection between these areas by the notion of categories subgenerated by an object. After a review of the relevant techniques in categories of left modules, applications to the bimodule structure of algebras and comodule categories are sketched. 1. Module theory: Homological classification, the category σ[M ], Morita equivalence, the functor ring, Morita dualities, decompositions, torsion theories, trace functor. 2. Bimodule structure of an algebra: Multiplication algebra, Azumaya rings, biregular algebras, central closure of semiprime algebras. 3. Coalgebras and comodules: C-comodules and C∗-modules, σ-decomposition, rational functor, right semiperfect coalgebras, duality for comodules. 4. Bialgebras and bimodules: The category MB , coinvariants, B as projective generator inMB , fundamental theorem for Hopf algebras, semiperfect Hopf algebras. 5. Comodule algebras: (A-H)-bimodules, smash product A#H∗, coinvariants, A as progenerator in MA . 6. Group actions and module algebras: Group actions on algebras, A∗GA as a progenerator in σ[A∗GA], module algebras, smash product A#H, A#HA as a progenerator in σ[A#HA].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

The duality between vertex operator algebras and coalgebras, modules and comodules

We construct an equivalence between the categories of vertex operator algebras and vertex operator coalgebras. We then investigate to what degree weak modules, generalized modules and ordinary modules carry corresponding comodule structures, as well as when various comodules carry module structure.

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Module and Comodule Structures on Path Space

On path space kQ, there is a trivial kQ-module structure determined by the multiplication of path algebra kQ and a trivial kQ-comodule structure determined by the comultiplication of path coalgebra kQ. In this paper, on path space kQ, a nontrivial kQ-module structure is defined, and it is proved that this nontrivial left kQ-module structure is isomorphic to the dual module structure of trivial ...

متن کامل

Cohomology and Deformation of Module-algebras

An algebraic deformation theory of module-algebras over a bialgebra is constructed. The cases of module-coalgebras, comodule-algebras, and comodule-coalgebras are also considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000